一、鋼的熱處理應力
工件在加熱和冷卻過程中,由于表層和心部的冷卻速度和時間的不一致,形成溫差,就會導致體積膨脹和收縮不均而產生應力,即熱應力。在熱應力的作用下,由于表層開始溫度低于心部,收縮也大于心部而使心部受拉,當冷卻結束時,由于心部最后冷卻體積收縮不能自由進行而使表層受壓心部受拉。即在熱應力的作用下最終使工件表層受壓而心部受拉。這種現象受到冷卻速度,材料成分和熱處理工藝等因素的影響。當冷卻速度愈快,含碳量和合金成分愈高,冷卻過程中在熱應力作用下產生的不均勻塑性變形愈大,最后形成的殘余應力就愈大。
實踐證明,任何工件在熱處理過程中,只要有相變,熱應力和組織應力都會發生。只不過熱應力在組織轉變以前就已經產生了,而組織應力則是在組織轉變過程中產生的,在整個冷卻過程中,熱應力與組織應力綜合作用的結果,就是工件中實際存在的應力。
二、熱處理應力對淬火裂紋的影響
存在于淬火件不同部位上能引起應力集中的因素(包括冶金缺陷在內),對淬火裂紋的產生都有促進作用,但只有在拉應力場內尤其是在最大拉應力下)才會表現出來,若在壓應力場內并無促裂作用。
淬火冷卻速度是一個能影響淬火質量并決定殘余應力的重要因素,也是一個能對淬火裂紋賦于重要乃至決定性影響的因素。為了達到淬火的目的,通常必須加速零件在高溫段內的冷卻速度,并使之超過鋼的臨界淬火冷卻速度才能得到馬氏體組織。就殘余應力而論,這樣做由于能增加抵消組織應力作用的熱應力值,故能減少工件表面上的拉應力而達到抑制縱裂的目的。其效果將隨高溫冷卻速度的加快而增大。而且,在能淬透的情況下,截面尺寸越大的工件,雖然實際冷卻速度更緩,開裂的危險性卻反而愈大。
總結:
1、熱處理過程中產生的應力是不可避免的,而且往往是有害的。但我們可以控制熱處理工藝盡量使應力分布合理,就可將其有害程度降低到最低限度,甚至變有害為有利。
2、當熱應力占主導地位時應力分布為心部受拉表面受壓,當組織應力占主導地時應力分布為心部受壓表面受拉。
3、在高淬透性鋼件中易形成縱裂,在非淬透性工件中往往形成弧裂,在大型非淬透工件中容易形成橫斷和縱劈。
4、滲碳使表層馬氏體開始轉變溫度(Ms)點下降,可導至淬火時馬氏體轉變順序顛倒,心部首先發生馬氏體轉變而后才波及到表面,可獲得表層殘余壓應力而提高抗疲勞強度。
5、滲碳后進行等溫淬火可保證心部馬氏體轉變充分進行以后,表層組織轉變才進行。使工件獲得比直接淬火更大的表層殘余壓應力,可進一步提高滲碳件的疲勞強度。
6、復合表面強化工藝可使表層殘余壓應力分布更合理,可明顯提高工件的疲勞強度。
?來源:熱處理小講堂
相關文章: