在大量的零件斷裂事故中由于材料缺陷引起的失效占有相當大的比重。材料缺陷包括金屬夾雜物與非金屬夾雜物,鋼錠偏析、結晶偏析、氣孔偏析,鋼中的氣體,鑄造缺陷等等。
機車在行進途中十字頭突然斷裂。十字頭實物照片見圖10-1。十字頭內側板斷口宏觀形貌見圖10-2。
圖10-1 十字頭斷裂實物照片
圖10-2 十字頭內側板宏觀斷口
1. 化學成分Wt(%)
表:化學成份
硫含量過高
2. 機械性能
表:機械性能
3. 金相分析
對內側板斷口的背面作硫印和低倍檢驗看出,鑄件存在較嚴重的表面氣孔,疏松以及硫的偏析等缺陷。金相組織為鐵素體+珠光體。晶粒度5~6級,氧化物1.5級,硫化物3.0級。
4. 斷口的宏觀分析
斷口無明顯的塑性變形,有明顯的臺階存在,并隱約可見到貝紋線,屬多源疲勞斷裂 內側板斷口疲勞源位于鑄件表面一側,源區表面光滑。
5. 掃描電鏡分析
從疲勞源區及疲勞裂縫擴展區切取試樣,分別在電鏡下觀察。觀察發現內側板斷口的疲勞源區存在表面氣孔和表面孔洞等缺陷,見圖10-3和圖10-4。
圖10-3 表面氣孔 ×30
圖10-4 表面孔洞 ×50
在斷口上可見到較多的顯微空隙(疏松缺陷)見圖10-5在疲勞擴展區中可見到疲勞輝紋及受研磨的形態。這說明十字頭斷裂為機械疲勞斷裂。
圖10-5顯微空隙
通過對十字頭斷裂的綜合分析,結論是以其鑄件表面的氣孔,孔洞等鑄造缺陷為疲勞的機械疲勞斷裂。
篩板熱成型或熱成型淬火后,在篩板篩孔邊緣產生縱向和橫向裂紋。放置一段時間后裂紋尺寸增大、數量增多,甚致發生斷裂。
1. 化學成分(Wt%)
表:化學成分
成分合格
2. 斷口分析
宏觀斷口呈灰色、無金屬光澤,斷口分層,斷口的邊、角處氧化銹蝕,表明淬火加熱之前鋼板中存在有裂紋。
圖10-6(a)是篩板縱向斷口(斷口表面與鋼板表面平行)掃描電鏡照片。由圖中可見斷口以沿晶型斷裂為主,晶界上有較多的顆粒狀夾雜物。圖10-6(b)為與鋼板表面垂直的橫向斷口。該斷口是沿晶與準解理混合斷口。在斷口上可以明顯地觀察到沿軋向分布的粗大夾雜物,在夾雜物的兩側及兩端均有裂紋存在。
圖10-6篩板斷口形貌
a)與鋼板表而平行的斷口,(b)與鋼板表而垂直的斷口
利用x射線能譜儀分析斷口表面及夾雜物的化學成分。分析結果見下表。由表中數據可知,斷口上的S含量較高。已超出45鋼S含量10倍以上,這說明在晶界上S元素偏析,根據夾雜物的成分,可以確認這些粒狀和條狀夾雜均為(Mn,Fe)S。
表: x射線能譜分析結果
3. 電子探針分析
利用電子探針觀測了硫化物在鋼中的分布見圖14-7。圖10-7(a)為S的面分布,10-7(b)為Mn的面分布。
圖10-7鋼中硫化物的分布
a)S的面分布; (b)Mn的面分布
分析結論是過量的硫化物以條狀沿軋向分布,導致鋼材變形開裂傾向增大,沿著皂條狀分布的硫化物夾雜發生開裂或分層;S等有害元素在晶界上偏聚削弱晶界的結合力,使晶界弱化和脆化是篩板發生斷裂的根本原因
70Cr3Mo鋼大型冷軋支承輥粗加工后停放于車間,伴隨著一聲巨響輥身中部垂直軸線方向開裂成兩段。
1. 宏觀斷口分析
斷口比較平齊,呈脆性斷裂特征見圖10-8。斷口上未發現任何肉眼可見的冶金缺陷。在斷口上可見到自內向外呈放射狀的斷裂臺階,可以看出裂紋是由內部萌生向外擴展開裂的。在圖10-9位置套取七根料棒,分別進行斷口、金相組織、化學成分、氫含量分析及機械性能試驗。
圖10-8支承輥宏觀斷口
2. 微觀斷口分析
斷口微觀形貌特征基本屬于解理+準解理,位于心部的斷口上發現有碳化物的偏析區,定性分析為鉻的碳化物。該材料很脆,對裂紋的擴展很敏感。斷口上可見到許多以非金屬夾雜物或碳化物小顆粒為源形成的脆性斷裂見圖10-10。
圖10-9 從斷口上取樣位置示意圖
圖10-10以碳化物顆粒為源的脆性斷裂×350
圖10-11氫脆斷口 ×700 圖10-12沿晶和穿晶的二次裂紋 ×1050
在圖10-9,1,2,3,4位置斷口上皆見到碎條狀氫脆斷口的特征見圖10-11。在斷口上還見到較多的穿晶或沿晶的二次裂紋見圖10-12。各斷口上未發現明顯的冶金缺陷。
3. 金相組織
金相組織檢驗結果見下表及圖10-13和圖10-14。
表:金相組織
圖10-13層片珠光體+網狀碳化物(試樣2.4)x 300
圖10-14索氏體(試樣7) ×300
4.機械性能
機械性能測試結果見下表。
表:機械性能
5. 化學成分
化學成分分析結果見下表。
表:化學成分
6. 氫含量
氫含量分析結果見下表。
表:氫含量
7. 分析
此支承輥材質為70Cr3Mo,這種材質對氫脆的敏感性隨碳含量的增加而增加。鉻在4%的范圍內,對氧的敏感性隨鉻含量的增加而增加。從斷口的微觀分析中可知此輥心部很脆,裂紋敏感性很強。一點點非金屬夾雜物或碳化物顆粒都可成為脆性開裂的裂源。
從靠近心部的幾個斷口上皆發現有氫脆斷口的微觀形貌特征。從氫含量的數據看氫含量并不高,這主要是由于軋輥斷裂后仃放了一個多月才取樣,定氫試樣加工完后又沒及時分析,又經過了近一周的時間才分析,所以氫已大部分逸出。
氫脆對斷面收縮率影響最為明顯,取樣加工成拉伸試樣后立刻做機械性能試驗,氫的影響就比較明顯。從機械性能數據來看,位于心部的幾個試樣斷面收縮率很低。不同位置斷面收縮率的高低正好與氧含量的高低相對應。
從化學分析來看心部碳、磷、鉻偏高。
此輥予備熱處理的理想組織為球狀珠光體而該輥心部組織為層狀珠光體+網狀碳化物。這種組織承受應力差,對裂紋的敏感性較強。斷口上穿晶或沿晶的二次裂紋即是很好的例證。
此輥經中溫回火,表面硬度高達HS71,熱應力較高。對于軸類鍛件熱應力的存在形式是以軸向應力為最大的三向拉應力。鋼中存在著一定的氫(冒口中氫含量為2.3ppm)。在內應力作用下位錯塞積,形成顯微裂紋一斷裂源。應力使顯微裂紋的尖端形成三向拉應力的應力場,促使自固溶體中脫溶的氫原于向應力場擴散、聚集。進人顯微裂紋內的氫原子結合成氫分子,在裂紋內產生很高的氫分子壓力,與內應力相疊加便引起鋼的脆斷。
結論是軋輥內存在著以熱應力為主的內應力是軋輥置裂的主要原因。軋輥內較高的氫含量,熱處理后心部層片狀珠光體+網狀碳化物組織都是造成多源脆性開裂的重要原因。